13 research outputs found

    Integrating Epigenetic Priors For Improving Computational Identification of Transcription Factor Binding Sites

    Get PDF
    Transcription factors and histone modifications play critical roles in tissue-specific gene expression. Identifying binding sites is key in understanding the regulatory interactions of gene expression. Nave computational approaches uses solely DNA sequence data to construct models known as Position Weight Matrices. However, the various assumptions and the lack of background genomic information leads to a high false positive rate. In an attempt to improve the predictive performance of a PWM, we use a Hidden Markov Model to incorporate chromatin structure, in particular histone modifications. The HMM captures physical interactions between distinct HMs. Indeed, the integration of sequence based PWM models and chromatin modifications improve the predictive ability of the integrative model

    Cost-effectiveness of a potential Zika vaccine candidate: a case study for Colombia

    Get PDF
    Background: A number of Zika vaccine platforms are currently being investigated, some of which have entered clinical trials. We sought to evaluate the cost-effectiveness of a potential Zika vaccine candidate under the WHO Vaccine Target Product Profile for outbreak response, prioritizing women of reproductive age to prevent microcephaly and other neurological disorders. Methods: Using an agent-based simulation model of ZIKV transmission dynamics in a Colombian population setting, we conducted cost-effectiveness analysis with and without pre-existing herd immunity. The model was parameterized with estimates associated with ZIKV infection, risks of microcephaly in different trimesters, direct medical costs, and vaccination costs. We assumed that a single dose of vaccine provides a protection efficacy in the range 60% to 90% against infection. Cost-effectiveness analysis was conducted from a government perspective. Results: Under a favorable scenario when the reproduction number is relatively low (R0 = 2.2) and the relative transmissibility of asymptomatic infection is 10% compared with symptomatic infection, a vaccine is cost-saving (with negative incremental cost-effective ratio; ICER) for vaccination costs up to US6perindividualwithoutherdimmunity,anduptoUS6 per individual without herd immunity, and up to US4 per individual with 8% herd immunity. For positive ICER values, vaccination is highly cost-effective for vaccination costs up to US10(US10 (US7) in the respective scenarios with the willingness-to-pay of US$6610 per disability-adjusted life-year, corresponding to the average per capita GDP of Colombia between 2013 and 2017. Our results indicate that the effect of other control measures targeted to reduce ZIKV transmission decreases the range of vaccination costs for cost-effectiveness due to reduced returns of vaccine-induced herd immunity. In all scenarios investigated, the median reduction of microcephaly exceeded 64% with vaccination. Conclusions: Our study suggests that a Zika vaccine with protection efficacy as low as 60% could significantly reduce the incidence of microcephaly. From a government perspective, Zika vaccination is highly cost-effective, and even cost-saving in Colombia if vaccination costs per individual is sufficiently low. Efficacy data from clinical trials and number of vaccine doses will be important requirements in future studies to refine our estimates, and conduct similar studies in other at-risk populations. Keywords: Zika, Microcephaly, Vaccination, Agent-based modeling, Cost-effectivenessYork University Librarie

    Cost-Effectiveness Analysis Using Agent-Based Modelling: A General Framework with Case Studies

    Get PDF
    In recent years, agent-based modelling (ABM) has been increasingly used to elucidate complex adaptive systems. An ABM is a structural computational system that consists of a collection of abstract objects (agents) embedded in a virtual environment that interact based on a set of prescribed rules. While traditional approaches such as differential equation-based compartmental models span a vast literature, they often impose restrictive assumptions such as homogeneity and determinism that limit their application to real settings. ABM overcomes these limitations through a bottom-up approach in which macro dynamics emerge from micro level phenomena. During the past decade, there has been a surge of interest in the use of ABM in human health and disease dynamics. While this is rapidly growing, its application to other relevant areas such as health economics is still in infancy, and frameworks that could systematically apply ABM are still lacking. In this thesis, we develop a general framework for cost-effectiveness analysis in which ABM is designed to project the system dynamics. We argue that ABM improves the empirical reliability of policy-oriented simulation models and that it presents an ideal tool to address the complexity of disease processes, project the impact of interventions and inform their optimal implementation. We use this framework in an epidemiological context to quantify the economic impact of vaccination strategies for prevention of infectious diseases. We present two case studies for a human-to-human infection transmission (i.e., Haemophilus influenzae) and a vector-borne disease (i.e., Zika). In each case, we detail the construction of ABM and its utilization to conduct Bayesian cost-effectiveness analysis of potential vaccine candidates. In addition to uncovering important characteristics of these diseases in epidemic dynamics, we present their first cost-effectiveness analysis and implications for vaccination strategies in different populations settings

    Additional file 1: of Cost-effectiveness of a potential Zika vaccine candidate: a case study for Colombia

    No full text
    Details of the model and its analysis with additional simulation results. (PDF 3785 kb

    Projecting influenza vaccine effectiveness: A simulation study.

    No full text
    The impact of influenza vaccination is largely measured by estimating vaccine effectiveness (VE), which vary in different seasons. Strain mutations and waning immunity present two key mechanisms affecting VE. We sought to quantify the relative effect of these mechanisms by projecting VE and the reduction of illness due to vaccination. We developed a stochastic age-structured agent-based simulation model of influenza transmission dynamics to encapsulate intraseason waning of immunity post-vaccination, and mutation-induced antigenic distance between circulating strains and vaccine strains. Parameterizing the model with published estimates, we projected the temporal and overall VE during an epidemic season, and estimated the reduction of infection for high (70%) and low (30%) vaccine efficacies to reflect the levels of vaccine-induced protection in randomized control trials. Both temporal and overall VE decreased as the attack rate increased, with lower median values for epidemics starting with strains that were antigenically more distant from vaccine strains. We observed a higher rate of temporal decline with considerably lower median values of the overall VE in the presence of intraseason waning of immunity compared with only the antigenic distance effect. The highest benefit of vaccination in preventing influenza infection was achieved at moderate attack rates in the range of 6%-15%. The results show that even when VE is relatively low in the population and almost negligible for older age groups (i.e., 50+ years), vaccination can still prevent significant illness in high-risk individuals; thereby reducing healthcare resource utilization and economic burden. Our study indicates that early vaccination remains an important strategy for alleviating the burden of seasonal influenza. Policy discussions on optimal timing of vaccination to reduce the effect of intraseason waning of immunity should be considered in the context of strain mutations within the epidemic course
    corecore